The use of demineralised bone fibres (DBF) in conjunction with supercritical carbon dioxide (SCCO2) treated allograft in anterior lumbar interbody fusion (ALIF)

Jeremy Rajadurai, Vedran Lovric, Ralph J. Mobbs, Wen Jie Choy, William R. Walsh


Spinal fusion is a common procedure for the treatment of various spinal pathologies. Since the early days, spinal fusion has been carried out with the use of bone grafts as interbody spacers. With the development of synthetic interbody implants, bone grafts were used to facilitate fusion. Although autograft provides the best outcomes for fusion, allografts have been sought after due to donor site morbidity and other shortcomings. Currently, a vast variety of demineralised bone matrix (DBM) products are available with their methods of processing and preparation impacting their properties and clinical outcomes. Demineralised bone fibres (DBF), a form a DBM can be easily packed into implants when mixed with other substances such as allograft bone and patient’s blood providing a scaffold for the mixture. We report two cases of anterior lumbar interbody fusion (ALIF) utilising a titanium-polyetheretherketone (PEEK) interbody cage filled with DBF, allograft and patient’s blood with a maximum of 12 months follow-up outcome.