Article Abstract

A single center retrospective clinical evaluation of anterior cervical discectomy and fusion comparing allograft spacers to silicon nitride cages

Authors: Micah W. Smith, Daniel R. Romano, Bryan J. McEntire, B. Sonny Bal


Background: Iliac crest autograft or allograft spacers have been traditionally utilized in anterior cervical discectomy and fusion (ACDF) to provide vertebral stabilization and enhanced osteogenesis. However, abiotic cages have largely replaced these allogenic sources due to host-site morbidities and disease transmission risks, respectively. Although devices made of polyetheretherketone (PEEK) or titanium-alloys (Ti) have gained wide popularity, they lack osteoinductive or conductive capabilities. In contrast, silicon nitride (Si3N4) is a relatively new implant material that also provides structural stability and yet purportedly offers osteopromotive and antimicrobial behavior. This study compared radiographic outcomes at ≥12 months of follow-up for osseous integration, fusion rate, time to fusion, and subsidence in ACDF patients with differing intervertebral spacers.
Methods: Fifty-eight ACDF patients (108 segments) implanted with Si3N4 cages were compared to thirty-four similar ACDF patients (61 segments) implanted with fibular allograft spacers. Lateral radiographs (normal, flexion, and extension) were obtained at 3, 6, 12, and 24 months to assess osseous integration, the presence of bridging bone, the absence of peri-implant radiolucencies, subsidence, and fusion using both interspinous distance (ISD) and Cobb angle methods.
Results: In patients with ≥12 months of follow-up, fusion for the allograft spacers and Si3N4 cages was 86.84% and 96.83%, respectively (ISD method, P=0.10), and 67.65% and 84.13%, respectively (Cobb angle method P=0.07), while osseointegration was 76.32% and 93.65%, respectively (P=0.02). The time to fusion significantly favored the Si3N4 cages (4.08 vs. 8.64 months (ISD method, P=0.01), and 6.76 vs. 11.74 months (Cobb angle method, P=0.04). The assessed time for full osseointegration was 7.83 and 19.24 months for Si3N4 and allograft, respectively (P=0.00). Average subsidence at 1-year follow-up was 0.51 and 2.71 mm for the Si3N4 and allograft cohorts, respectively (P=0.00).
Conclusions: In comparison to fibular allograft spacers, Si3N4 cages showed earlier osseointegration and fusion, higher fusion rates, and less subsidence.