Introduction

The pedicle screw (PS) fixation technique is widely used for stabilization in spine surgery. PS placement techniques can be further divided into open, minimally-open, and percutaneous techniques according to the exposed surgical field and incision length (1-5). According to the literature, there is a slight preference for percutaneous PS techniques versus open and minimally-open techniques due to reduced operative time, blood loss, and incision length as well as the optimal positioning of the screws with this procedure (6). The percutaneous placement of PS in the lumbar spine for various conditions, such as pars interarticularis defects (7), traumatic or osteoporotic vertebral fractures (8-11), restoration and/or preservation of lumbar lordosis during correction procedures for severe kyphoscoliosis (12,13), spondylosis (14-16), spondylolisthesis (17,18), and finally to provide supplemental stabilization for lumbar interbody fusion procedures (19-22).

Another relatively new indication for percutaneous PS placement is in obese patients with spinal deformities and severe degenerative lumbar disease as it reduces the operative site exposure, surgical time, and hospitalization and decreases the postoperative infection rate (23-25).

Abstract: Several guidance techniques have been employed to increase accuracy and reduce surgical time during percutaneous placement of pedicle screws (PS). The purpose of our study was to present a modified technique for percutaneous placement of lumbar PS that reduces surgical time. We reviewed 23 cases of percutaneous PS placement using our technique for minimally invasive lumbar surgeries and 24 control cases where lumbar PS placement was done via common technique using Jamshidi needles (Becton, Dickinson and Company, Franklin Lakes, NJ, USA). An integrated computer-guided navigation system was used in all cases. In the technique modification, a handheld drill with a navigated guide was used to create the path for inserting guidewires through the pedicles and into the vertebral bodies. After drill removal, placement of the guidewires through the pedicles took place. The PS were implanted over the guidewires, through the pedicles and into the vertebral bodies. Intraoperative computed tomography was performed after screw placement to ensure optimal positioning in all cases. There were no intraoperative complications with either technique. PS placement was correct in all cases. The average time for each PS placement was 6.9 minutes for the modified technique and 9.2 minutes for the common technique. There was no significant difference in blood loss. In conclusion, this modified technique is efficient and contributes to reduced operative time.

Keywords: Pedicle screws (PS); percutaneous technique; navigation; computed tomography (CT)

Submitted Sep 11, 2017. Accepted for publication Nov 15, 2017.
doi: 10.21037/jss.2017.12.05
View this article at: http://dx.doi.org/10.21037/jss.2017.12.05
for the development of several methods for percutaneous screw placement in the lumbar spine with increased safety and accuracy. The implantation of percutaneous PS can be assisted by several navigational techniques, such as fluoroscopic imaging obtained from one or two C-arms or 3D isocentric C-arms (26-35), imaging obtained intraoperatively by computed tomography (CT) integrated with navigational systems (29,36-39), and robotic techniques (6,19,40-49). Patients that are operated on with minimally invasive techniques have less hospitalization rates, less use of opioids, and less reports of adverse events in comparison to open techniques (6,31). The goals of these techniques are reduction of operative time, radiation exposure, PS malpositioning, and procedure-related complications (such as injuries to the nerve root, spinal cord, blood vessels, and viscera) (50-54). The objective of this study is to present a modified navigational guidance technique for PS placement in the lumbar spine with the use of cone-beam CT (iCBCT) and image-guided navigation system (IGNS) (O-arm Surgical Imaging System, Medtronic, Minneapolis, MN, USA). This technique was aimed at reducing surgical time during MIS lumbar spine procedures.

Methods

Study design, data collection

The local institutional review board approved the protocol for this retrospective study. This approval included a HIPAA waiver of patient authorization owing to the retrospective nature and use of de-identified data in the study.

After receiving institutional approval, the authors reviewed the data for 23 patients who underwent percutaneous placement of PS using their modified technique from November 2015 to August 2016. In an effort to validate this technique, they collected the data for 24 other patients (control group) who were operated on with the Jamshidi needle (Becton, Dickenson and Company, Franklin Lakes, NJ, USA) technique during the same time period (30,55). This technique was performed only in lumbar MIS procedures. The two operative groups were matched for age and body mass index (BMI).

The data, extracted from surgery notes and patients’ charts, included indication for surgery; the patients’ sex, age, and BMI; intraoperative blood loss; intraoperative complications (including screw misplacement that resulted in repositioning of the screw); duration of the surgical procedure; and postoperative complications immediately after surgery and at the time intervals of 30 and 90 days after the procedure.

Technique description

A cone-beam CT (iCBCT) and image-guided navigation system (IGNS) (O-arm Surgical Imaging System, Medtronic, Minneapolis, MN, USA) was used in all cases. After prone positioning of the patient on a Jackson table (Medtronic, Minneapolis, MN, USA), all the navigational instruments were registered, and a reference dynamic navigational frame was implanted percutaneously in the posterior superior iliac spine area (Figure 1). Then a CT scan of the lumbar spine was obtained for navigational purposes (Figure 2). Under the guidance of the
navigational system (Stealth Station Surgical Navigation System, Medtronic, Minneapolis, MN, USA) (Figure 3), the optimal entry point and trajectory of the PS were determined, and the trajectory projection was marked on the skin. After a skin incision was made, a navigated drill guide was docked at the optimal entry point on the transverse process and facet junction (Figure 4). In the modified technique, the pedicle was cannulated with a handheld high torque drill (Triton, Medtronic) instead of the Jamshidi needles (Figures 5,6). A drill stop was used to preset the drill length to 25 mm. After the drill was fully inserted and placement of the tip of the drill lateral to the medial border of the pedicles was confirmed, the drill stop was reset to 35 mm and the drill was then advanced (Figures 7,8). Once the handheld drill had been removed, the guidewires were placed through the same drill guide and the screws were implanted over the guidewires. A final intraoperative CT was performed after the screw

Figure 3 The navigation system used for guidance during the procedure (left screen). A camera is integrated into the system for the navigation of the instruments (placed above the two screens). The right screen is connected to the C-Arm.

Figure 4 Docking the navigated drill guide to the transverse process and facet junction (axial, sagittal, and coronal images of the lumbar spine based on the intraoperative CT scan). The schematic outside the vertebral body (left upper and lower images) shows the actual position of the drill guide at the entry point to the pedicle. The inner projection (middle upper and lower images) represents the path (trajectory) for screw placement that will be created after the cannulation. Images obtained by the navigational system.
placement to ensure the optimal position, after which wound closure was completed.

In the control group of patients, the process of registration of the instruments was the same, with the use of the cone-beam CT (iCBCT) and image-guided navigation system (IGNS) After docking of the Jamshidi needle at the optimal entry point for the insertion of the PS, the Jamshidi needles were advanced in order to cannulate the pedicle and vertebral bodies under navigational control.

Results

Descriptive data

A total of 11 men and 12 women with a median age of 57.64 years and a median BMI of 37.65 were operated on according to the modified technique. The matched control group consisted of 10 men and 14 women with a median age of 57.18 years and a median BMI of 37.14. The procedures performed for the modified technique group were: 9 lateral interbody fusions (LIFs), 10 anterior lumbar interbody fusions (ALIFs), and 4 transforaminal lumbar interbody fusions (TLIFs). For the control group, there were 11 LIFs, 11 ALIFs, and 2 TLIFs. A total number of 100 screws were implanted with the modified technique and 104 screws were implanted with the Jamshidi needle technique. Percutaneous screw placement was performed for supplementary stabilization in MIS lumbar spine procedures for both groups of patients.

Outcome data

There were no intraoperative complications associated with the modified or the standard technique. In both operative groups, PS placement was correct, without any breach noted at the pedicles in any case. The average time for PS placement was 6.9 minutes for the new technique. The average time for the standard technique used with the control group was 9.2 minutes. An average blood loss of 54 mL (range, 0–100 mL) was noted in the control group versus an average of 57 mL of blood loss within the same range (0–100 mL) in the new technique group. The average follow-up was 6.2 months in the control group of patients (range, 3–10 months) and 6.5 months in the group of patients with the new technique (range, 2.5–9 months).
There were no infections noted in any of the patients at their latest follow-up.

Discussion

Neuronavigation technologies have evolved significantly in spine surgery during the last decades and have provided significant advantages as an adjunct to minimally invasive surgical techniques (56). The reported accuracy in PS placement when fluoroscopic guidance is used ranges between 79.8% and 96.9% (26,28,30,34-36,46,54,57-59) while the intraoperative CT-based navigation technique is between 95.3% and 100% (60-63), and the robotic guidance technique between 83.6% and 100% (46,49,64-66).

Several reports of navigated percutaneous PS placement in the lumbar spine with the use of CT have been published. Jamshidi navigated needles are widely used for the placement of guidewires into the pedicles and vertebral bodies in this procedure as well as in vertebroplasty (30,67). According to our technique, cannulation of the pedicles for the placement of the guidewires is performed through a navigated drill guide. Our technique minimizes the micro-displacement that is noted with Jamshidi needle technique at the entry point to the pedicles and also potential errors in navigation (38). There is minimal displacement of the drill tip even in difficult cases with hypertrophic facets in comparison to Jamshidi needles which enter the pedicle with the use of a mallet. Thus, complications associated with the Jamshidi technique, such as fragmentation of the needles in the presence of sclerotic pedicles or difficult introduction of the needles in small diameter pedicles, are obviated (1,68).

With the modified, new technique, there is minimal need for repositioning or redirection of the drill. If redirection is required, it can be done easily with slight withdrawal of the drill tip and redirection of the drill guides. In addition, there is real-time feedback from the drill-tip as it passes with less resistance through the cancellous bone at the center of the pedicle utilizing the drill and tap technique.

Furthermore, the modification is an efficient method, proven by the comparison of our measurements with those of other studies that used other percutaneous navigated PS

Figure 8 Images obtained from the navigational system (axial, coronal, and sagittal images of the lumbar spine) showing the screw trajectory during screw insertion to the lumbar spine above the guidewires.
insertion techniques (average of 10.35 minutes per screw placement in those studies vs. 6.9 minutes in ours) (58). In addition, our time per screw placement was similar to that reported in a recent study of the K-wireless technique for percutaneous PS placement (average of 6.92 minutes in that study vs. 6.9 minutes in ours) (69). Finally, the modified technique is very favorable in obese patients where the introduction of the guidewires proved to be a more simplified procedure than the more common technique. In both groups of patients studied, the average BMI was more than the normal ratio. The intraoperative CT scans performed after screw insertion did not show any screw malpositioning for either group.

Limitations

Drawbacks for this study are the retrospective design and small number of patients. A large prospective study is warranted to further evaluate the effectiveness of the modified technique.

Conclusions

This modified technique for percutaneous placement of lumbar PS is characterized by minimal blood loss, and decreased operative time in comparison to the commonly used method.

Acknowledgements

The authors thank Paul H. Dressel BFA for preparation of the illustrations and Carrie A. Owens MSILS and Debra J. Zimmer for editorial assistance.

Footnote

Conflicts of Interest: Dr. J Pollina is involved with surgical training for Stryker/NuVasive. The other authors have no conflicts of interest to declare.

References

